MAT 3749 2.4 Handout

 Rolle’s Theorem  

Let 
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 The Mean Value Theorem  

Let 
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 Cauchy’s Mean Value Theorem

Let 
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 and 
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In particular, if 
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	Analysis

What are the seminaries and differences between Rolle’s Theorem and the CMVT?
	Seminaries:


Differences:



	Guess an approach to prove the MVT.


	


	Recall our experience with proving the MVT from Rolle’s Theorem.

The equation of the secant line is 
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Let 
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	For the same token, let us create a function 
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 that would help us to get to the conclusion of the CMVT.



	If 
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	What is the conclusion that we want?


	

	Can you rewrite the last expression so that it is similar to the one from Rolle’s Theorem?


	

	Compare! What could be a possible definition for 
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	Proof
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Also, 
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That is, 
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By Rolle’s Theorem, 
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Remarks

1. The Mean Value Theorem is a special case of Cauchy’s Mean Value Theorem.

	Compare CMVT and the MVT side-by-side. 



	Let 
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 and 
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	Let 
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 be continuous on 
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	What is a possible choice of  
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 so that the conclusion of the MVT follows from the conclusion of CMVT?


	


	Proof

Let 
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By Cauchy’s MVT, 
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2.  Cauchy’s Mean Value Theorem is NOT a consequence of the Mean Value Theorem.
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 l’Hospital’s Rule Version 1

Let 
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	Analysis
1. Let us look at how Cauchy’s MVT can help us to prove l’Hospital’s Rule.

2. We will need to check all the hypotheses of Cauchy’s MVT.



	Conceptual Diagram


	Cauchy’s MVT requires the existence of intervals 
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	By Cauchy’s MVT, 
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	How is this similar to what we want to prove?


	

	From our diagram, if we take the limit as 
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	Show that
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	From symmetry, it is not difficult to prove the other side of the limit:
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	There are 4 conditions that we need to check before we can use Cauchy’s MVT.   They are…


	1. 

2. 

3. 

4. 


	What conditions do we have to prove the 4 conditions above?


	A. 

B. 

C. 



	We can use (A) to prove (1) and (2).

We have already used (B).

So, (C) must be involved in proving (3) and (4).  It turns out that we need to use both (A) and (C) to show that 
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	Why the definition above implies that  
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	Why does this imply  
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Proof
	Suppose 
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This implies

   1.  
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Similarly, we can prove that
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